Wilms-Tumor-Gen WT1 steuert Funktionsfähigkeit der Niere

Press Releases Research

Unsere Nieren sind für die Reinigung des Blutes und Ausscheidung von Schadstoffen essentiell; schon kleine Schäden beeinträchtigen den gesamten Körper. Die Funktionsfähigkeit der Niere geht mit dem Lebensalter verloren. Alternsbedingte Nierenerkrankungen sind die Folge des Anstiegs der Lebenserwartung. Jenaer Forscher des Leibniz-Instituts für Altersforschung haben mit Kollegen aus Wien entdeckt, dass das Wilms-Tumor-Gen WT1 die Bildung und den Erhalt von Podozyten, hochdifferenzierte Zellen des Nierenfilters, auch in der adulten Niere steuert. WT1 ist damit nicht nur für die embryonale Entwicklung, sondern auch für den Erhalt der Niere wichtig. Nature Med. 2013, doi:10.1038/nm.3142.

In unserem Körper übernehmen die Nieren eine Reihe wichtiger Aufgaben; sie filtern das Blut und produzieren Urin, um Schadstoffe aus dem Körper auszuscheiden. Neben ihrer Filterfunktion steuern sie aber auch den Wasser- und Salzhaushalt und produzieren Hormone. Treten Schäden am Nierengewebe auf, wird die Funktionsweise der Niere eingeschränkt, meist mit fatalen Folgen für den gesamten Organismus. 

Die Fokal segmentale Glomerulosklerose (FSGS) ist eine chronische Erkrankung der Niere, bei der Teile des Gewebes nach und nach vernarben, so dass schließlich die Filterfunktion der Niere aussetzt. Diese Erkrankung führt häufig zum nephrotischen Syndrom - einer deutlich erhöhten Eiweißausscheidung mit Verlust von Bluteiweißen (Proteinurie) und Ödemen (Wasseransammlungen im Körper). In Abhängigkeit vom Schweregrad werden die Betroffenen mit Medikamenten behandelt, die zu beträchtlichen Nebenwirkungen führen. Alternativ dazu ist eine dauerhafte Dialyse oder sogar eine Nierentransplantation erforderlich. 

Einer Gruppe von Wissenschaftlern aus Österreich und Deutschland ist es nun gelungen, wichtige Faktoren für das Auftreten der Fokal segmentalen Glomerulosklerose (FSGS) nachzuweisen. „Eine besondere Rolle spielen dabei die Podozyten, auch Füßchenzellen genannt, die für die spezifischen Eigenschaften des Nierenfilters essentiell sind“, berichtet Professor Christoph Englert vom Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI) in Jena. 

Die Podozyten sind hochdifferenzierte Zellen, die die äußere Schicht der glomerulären Filtrationsbarriere bilden und zwischen deren fußförmigen Ausläufern, auch Fußfortsätze genannt, der eigentliche Filtrationsprozess abläuft. Der Primärharn wird abgepresst und Blutzellen sowie Proteine werden zurückgehalten. „Im Nierengewebe von FSGS-Erkrankten sind die Fußfortsätze der Podozyten so stark abgeflacht, dass die filigrane Struktur der Filtrationsschlitze zerstört wird“, erklärt Ralph Sierig, ehemaliger Doktorand in der Arbeitsgruppe Englert, „so dass der Nierenfilter seine Selektivität verliert und Proteine, die eigentlich nicht filtriert werden sollten, im Urin ausgeschieden werden.“ 

Bereits in früheren Arbeiten konnten die Jenaer Forscher nachweisen, dass der Transkriptionsfaktor WT1 (Wilms-Tumor-Gen) in der Embryonalentwicklung maßgeblich an der Ausbildung einer gesunden und korrekt funktionierenden Niere beteiligt ist und Störungen im Entwicklungsprozess zu Nierenkrebs bei Kindern führt. In der aktuellen Studie fanden die Wiener Kollegen um Dontscho Kerjaschki, dass WT1 von einem kurzen RNA-Molekül von etwa 20 Nukleotiden, der mikroRNA-193a (miRNA-193a), ausgeschalten werden kann. 

miRNAs wurden erst vor einigen Jahren entdeckt; sie kommen in Tieren und Pflanzen sowie beim Menschen vor und stellen wichtige Regulatoren der Genaktivität dar. Wird die miRNA-193a in der Niere erwachsener Mäuse aktiviert, führt dies zum Verlust von WT1 und damit zur Herunterregulierung von Proteinen, die für die Stabilität der Podozyten wichtig sind. In der Folge bricht anschließend die Filterfunktion der Niere zusammen. Das Anschalten der mikroRNA-193a könnte einer der Gründe für das Auftreten der FSGS sein. Wie und warum sie angeschaltet wird, ist Gegenstand derzeitiger Untersuchungen. 

„Im Rahmen dieser neuen Studie haben wir ein Mausmodell entwickelt, wo wir in der Niere von adulten, d.h. erwachsenen Tieren, gezielt das WT1-Gen ausschalten können, um den Verlust der Podozyten-Struktur detaillierter zu untersuchen,“ berichtet Prof. Englert. „Diese neuen zellulären Mechanismen, die für die Podozyten-Destabilisierung verantwortlich sind, belegen, dass WT1 nicht nur für die Entwicklung der Niere, sondern auch für die Aufrechterhaltung der Funktion der Niere essentiell ist.“ 

Mit dem steigenden Durchschnittsalter der Menschen wird das chronische Nierenversagen zunehmend zu einer lebensbegrenzenden Erkrankung. Ersatztherapien, Transplantation und vor allem die regelmäßige Dialyse sind extrem teuer und belasten schon heute die Gesundheitsbudgets erheblich. „Vor diesem Hintergrund hat das neue Wissen über die Funktionsweise des WT1-Gens eine enorme volkswirtschaftliche Bedeutung“, unterstreicht Prof. Englert die neuen Forschungsergebnisse seines Teams. „Wenn wir den zugrundeliegenden Prozess für die Abnahme der Funktionsfähigkeit besser verstehen, gelänge es uns zukünftig vielleicht, die Organfunktion der Niere auch im Alter zu erhalten“, sind sich die Wissenschaftler des Leibniz-Instituts für Altersforschung einig. 

Publikation 

Gebeshuber CA, Kornauth C, Dong L, Sierig R, Seibler J, Reiss M, Tauber S, Bilban M, Wang S, Kain R, Böhmig GA, Möller MJ, Gröne HJ, Englert C, Martinez J, Kerjaschki D. microRNA-193a induces focal and segmental glomerulosclerosis by down-regulation of WT1. Nature Medicine (2013), doi:10.1038/nm.3142

Kontakt 

Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656378, Fax: 03641-656335
E-Mail: presse@fli-leibniz.de