Teilbereich 5: Systembiologie und Bioinformatik des Alterns

Teilbereich 5 konzentriert sich auf die Entwicklung von Methoden zur Analyse und zum Verständnis komplexer biologischer Systeme. Diese Arbeit umfasst das Design von Computeralgorithmen und biostatistischen Ansätzen sowie die Entwicklung neuer Omics- Strategien (z.B. Genomik/Epigenomik, Transkriptomik, Proteomik und Metabolomik) zur Untersuchung des Alterns und von alternsbedingten Krankheiten.

Aufgrund seiner Expertise in der rechnergestützten Datenanalyse ist der Teilbereich 5 eng mit allen anderen Teilbereichen verbunden, beinhaltet zwei wichtige Serviceeinrichtungen (Life Science Computing, Proteomics) und bietet Beratung im Bereich Statistik an. Darüber hinaus organisiert der Bereich Kurse zur Datenanalyse und Statistik.

Die Forschung wird durch fünf Schwerpunktbereiche definiert:

  • Abbildung extrinsischer und intrinsischer Faktoren, die die Stammzellen während des Alterns beeinflussen,
  • Integration von raumzeitlichen Proteomik- und Transkriptomikdaten,
  • Umfassende Bewertung von qualitativen und quantitativen Expressionsveränderungen,
  • Identifizierung und Analyse von epigenomischen Veränderungen im Alter und altersbedingten Veränderungen,
  • Netzwerkanalyse von genomischen, transkriptomischen und epigenomischen Veränderungen während des Alterns.

Forschungsfokus Teilbereich 5

Die Biologie des Alterns ist ein vielschichtiges Zusammenspiel von Netzwerken auf organischer, zellulärer, molekularer und genetischer Ebene. Mit der Etablierung des Teilbereichs „Systembiologie und Bioinformatik des Alterns“ will das FLI der Komplexität dieses Zusammenspiels gerecht werden. Ziel ist es, die Forschung in den Bereichen 1-4 bestmöglich zu verknüpfen, indem Netzwerkdaten von unterschiedlichen systemischen Ebenen zusammengeführt und so Mechanismen und Zusammenhänge aufgezeigt werden, die in einer Einzelbetrachtung unentdeckt geblieben wären.

Publikationen

(seit 2016)

2020

  • Butler enables rapid cloud-based analysis of thousands of human genomes.
    Yakneen S, Waszak SM, PCAWG Technical Working Group, Gertz M, Korbel JO, PCAWG Consortium
    Nat Biotechnol 2020, 38(3), 288–292
  • Comprehensive molecular characterization of mitochondrial genomes in human cancers.
    Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, Xu Y, Han L, Kim HL, Nakagawa H, Park K, Campbell PJ, Liang H, PCAWG Consortium
    Nat Genet 2020, 52(3), 342-52
  • The landscape of viral associations in human cancers.
    Zapatka M, Borozan I, Brewer DS, Iskar M, Grundhoff A, Alawi M, Desai N, Sültmann H, Moch H, PCAWG Pathogens, Cooper CS, Eils R, Ferretti V, Lichter P, PCAWG Consortium
    Nat Genet 2020, 52(3), 320-30

2019

  • Quantitation of Reactive Acyl-CoA Species Mediated Protein Acylation by HPLC-MS/MS.
    Baldensperger T, Simone DS, Ori A, Glomb MA
    Anal Chem 2019, 91(19), 12336-43
  • Cohesin-mediated NF-κB signaling limits hematopoietic stem cell self-renewal in aging and inflammation.
    Chen Z, Amro EM, Becker F, Hölzer M, Rasa SMM, Njeru SN, Han B, Di Sanzo S, Chen Y, Tang D, Tao S, Haenold R, Groth M, Romanov VS, Kirkpatrick JM, Kraus JM, Kestler HA, Marz M, Ori A, Neri F, Morita** Y, Rudolph** KL
    J Exp Med 2019, 216(1), 152-75 ** co-corresponding authors
  • Comment on 'Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age'.
    Dammann* P, Scherag* A, Zak N, Szafranski K, Holtze S, Begall S, Burda H, Kestler HA, Hildebrandt T, Platzer M
    Elife 2019, 8 * corresponding author
  • Karyopherin α2-dependent import of E2F1 and TFDP1 maintains protumorigenic stathmin expression in liver cancer.
    Drucker E, Holzer K, Pusch S, Winkler J, Calvisi DF, Eiteneuer E, Herpel E, Goeppert B, Roessler S, Ori A, Schirmacher P, Breuhahn K, Singer S
    Cell Commun Signal 2019, 17(1), 159
  • Conservation and divergence of the p53 gene regulatory network between mice and humans.
    Fischer M
    Oncogene 2019, 38(21), 4095-109
  • Profiling of gallbladder carcinoma reveals distinct miRNA profiles and activation of STAT1 by the tumor suppressive miRNA-145-5p.
    Goeppert B, Truckenmueller F, Ori A, Fritz V, Albrecht T, Fraas A, Scherer D, Silos RG, Sticht C, Gretz N, Mehrabi A, Bewerunge-Hudler M, Pusch S, Bermejo JL, Dietrich P, Schirmacher P, Renner M, Roessler S
    Sci Rep 2019, 9(1), 4796
  • Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines.
    Guo T, Luna A, Rajapakse VN, Koh CC, Wu Z, Liu W, Sun Y, Gao H, Menden MP, Xu C, Calzone L, Martignetti L, Auwerx C, Buljan M, Banaei-Esfahani A, Ori A, Iskar M, Gillet L, Bi R, Zhang J, Zhang H, Yu C, Zhong Q, Varma S, Schmitt U, Qiu P, Zhang Q, Zhu Y, Wild PJ, Garnett MJ, Bork P, Beck M, Liu K, Saez-Rodriguez J, Elloumi F, Reinhold WC, Sander C, Pommier Y, Aebersold R
    iScience 2019, 21, 664-80