Teilbereich 5: Systembiologie und Bioinformatik des Alterns

Teilbereich 5 konzentriert sich auf die Entwicklung von Methoden zur Analyse und zum Verständnis komplexer biologischer Systeme. Diese Arbeit umfasst das Design von Computeralgorithmen und biostatistischen Ansätzen sowie die Entwicklung neuer Omics- Strategien (z.B. Genomik/Epigenomik, Transkriptomik, Proteomik und Metabolomik) zur Untersuchung des Alterns und von alternsbedingten Krankheiten.

Aufgrund seiner Expertise in der rechnergestützten Datenanalyse ist der Teilbereich 5 eng mit allen anderen Teilbereichen verbunden, beinhaltet zwei wichtige Serviceeinrichtungen (Life Science Computing, Proteomics) und bietet Beratung im Bereich Statistik an. Darüber hinaus organisiert der Bereich Kurse zur Datenanalyse und Statistik.

Die Forschung wird durch fünf Schwerpunktbereiche definiert:

  • Abbildung extrinsischer und intrinsischer Faktoren, die die Stammzellen während des Alterns beeinflussen,
  • Integration von raumzeitlichen Proteomik- und Transkriptomikdaten,
  • Umfassende Bewertung von qualitativen und quantitativen Expressionsveränderungen,
  • Identifizierung und Analyse von epigenomischen Veränderungen im Alter und altersbedingten Veränderungen,
  • Netzwerkanalyse von genomischen, transkriptomischen und epigenomischen Veränderungen während des Alterns.

Forschungsfokus Teilbereich 5

Die Biologie des Alterns ist ein vielschichtiges Zusammenspiel von Netzwerken auf organischer, zellulärer, molekularer und genetischer Ebene. Mit der Etablierung des Teilbereichs „Systembiologie und Bioinformatik des Alterns“ will das FLI der Komplexität dieses Zusammenspiels gerecht werden. Ziel ist es, die Forschung in den Bereichen 1-4 bestmöglich zu verknüpfen, indem Netzwerkdaten von unterschiedlichen systemischen Ebenen zusammengeführt und so Mechanismen und Zusammenhänge aufgezeigt werden, die in einer Einzelbetrachtung unentdeckt geblieben wären.

Publikationen

(seit 2016)

2025

  • Rapid brain tumor classification from sparse epigenomic data.
    Brändl B, Steiger M, Kubelt C, Rohrandt C, Zhu Z, Evers M, Wang G, Schuldt B, Afflerbach AK, Wong D, Lum A, Halldorsson S, Djirackor L, Leske H, Magadeeva S, Smičius R, Quedenau C, Schmidt NO, Schüller U, Vik-Mo EO, Proescholdt M, Riemenschneider MJ, Zadeh G, Ammerpohl O, Yip S, Synowitz M, van Bömmel** A, Kretzmer** H, Müller** FJ
    Nat Med 2025, 31(3), 840-8 ** co-corresponding authors
  • Fetal-like reversion in the regenerating intestine is regulated by mesenchymal asporin.
    Iqbal S, Andersson S, Nesta E, Pentinmikko N, Kumar A, Kumar Jha S, Borshagovski D, Webb A, Gebert N, Viitala EW, Ritchie A, Scharaw S, Kuuluvainen E, Larsen HL, Saarinen T, Juuti A, Ristimäki A, Jeltsch M, Ori A, Varjosalo M, Pietiläinen KH, Ollila S, Jensen KB, Oudhoff MJ, Katajisto P
    Cell Stem Cell 2025, 32(4), 613-626.e8
  • DNA damage response regulator ATR licenses PINK1-mediated mitophagy.
    Marx* C, Qing* X, Gong* Y, Kirkpatrick J, Siniuk K, Beznoussenko GV, Kidiyoor GR, Kirtay M, Buder K, Koch P, Westermann M, Bruhn C, Brown EJ, Xu X, Foiani M, Wang ZQ
    Nucleic Acids Res 2025, 53(5), gkaf178 * equal contribution
  • Signatures of Nonlinear Aging: Molecular Stages of Life: Sudden Changes During Aging as Potential Biomarkers for an Age Classification System.
    Olecka** M, Morrison H, Hoffmann** S
    Bioessays 2025 (epub ahead of print) ** co-corresponding authors
  • Machine Learning and Omic Data for Prediction of Health and Chronic Diseases
    Olenik M, Dönertaş HM
    In: Encyclopedia of Bioinformatics and Computational Biology (edited by Shoba R, Mario C, Asif MK) 2025, 6, 365-388, Elsevier, Amsterdam
  • iSODA: A Comprehensive Tool for Integrative Omics Data Analysis in Single- and Multi-Omics Experiments.
    Olivier-Jimenez D, Derks RJE, Harari O, Cruchaga C, Ali M, Ori A, Di Fraia D, Cabukusta B, Henrie A, Giera M, Mohammed Y
    Anal Chem 2025 (epub ahead of print)
  • Protecting cell cycle integrity: enhanced start-codon stringency in mitosis.
    Omrani O, Siniuk K, Fischer M
    Signal Transduct Target Ther 2025, 10(1), 34
  • The master male sex determinant Gdf6Y of the turquoise killifish arose through allelic neofunctionalization.
    Richter A, Mörl H, Thielemann M, Kleemann M, Geißen R, Schwarz R, Albertz C, Koch P, Petzold A, Kroll T, Groth M, Hartmann N, Herpin A, Englert C
    Nat Commun 2025, 16(1), 540
  • Author Correction: Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision.
    Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen CY, Chu Q, Chuang TJ, Dehghannasiri R, Dieterich C, Dong X, Flicek P, Gaffo E, Gu W, He C, Hoffmann S, Izuogu O, Jackson MS, Jakobi T, Lai EC, Nuytens J, Salzman J, Santibanez-Koref M, Stadler P, Thas O, Vanden Eynde E, Verniers K, Wen G, Westholm J, Yang L, Ye CY, Yigit N, Yuan GH, Zhang J, Zhao F, Vandesompele J, Volders PJ
    Nat Methods 2025 (epub ahead of print)
  • Gene regulation by convergent promoters.
    Wiechens E, Vigliotti* F, Siniuk* K, Schwarz R, Schwab K, Riege K, van Bömmel A, Görlich I, Bens M, Sahm A, Groth M, Sammons MA, Loewer A, Hoffmann S, Fischer M
    Nat Genet 2025, 57(1), 206-17 * equal contribution