Teilbereich 5: Systembiologie und Bioinformatik des Alterns

Teilbereich 5 konzentriert sich auf die Entwicklung von Methoden zur Analyse und zum Verständnis komplexer biologischer Systeme. Diese Arbeit umfasst das Design von Computeralgorithmen und biostatistischen Ansätzen sowie die Entwicklung neuer Omics- Strategien (z.B. Genomik/Epigenomik, Transkriptomik, Proteomik und Metabolomik) zur Untersuchung des Alterns und von alternsbedingten Krankheiten.

Aufgrund seiner Expertise in der rechnergestützten Datenanalyse ist der Teilbereich 5 eng mit allen anderen Teilbereichen verbunden, beinhaltet zwei wichtige Serviceeinrichtungen (Life Science Computing, Proteomics) und bietet Beratung im Bereich Statistik an. Darüber hinaus organisiert der Bereich Kurse zur Datenanalyse und Statistik.

Die Forschung wird durch fünf Schwerpunktbereiche definiert:

  • Abbildung extrinsischer und intrinsischer Faktoren, die die Stammzellen während des Alterns beeinflussen,
  • Integration von raumzeitlichen Proteomik- und Transkriptomikdaten,
  • Umfassende Bewertung von qualitativen und quantitativen Expressionsveränderungen,
  • Identifizierung und Analyse von epigenomischen Veränderungen im Alter und altersbedingten Veränderungen,
  • Netzwerkanalyse von genomischen, transkriptomischen und epigenomischen Veränderungen während des Alterns.

Forschungsfokus Teilbereich 5

Die Biologie des Alterns ist ein vielschichtiges Zusammenspiel von Netzwerken auf organischer, zellulärer, molekularer und genetischer Ebene. Mit der Etablierung des Teilbereichs „Systembiologie und Bioinformatik des Alterns“ will das FLI der Komplexität dieses Zusammenspiels gerecht werden. Ziel ist es, die Forschung in den Bereichen 1-4 bestmöglich zu verknüpfen, indem Netzwerkdaten von unterschiedlichen systemischen Ebenen zusammengeführt und so Mechanismen und Zusammenhänge aufgezeigt werden, die in einer Einzelbetrachtung unentdeckt geblieben wären.

Publikationen

(seit 2016)

2018

  • Googles DeepVariant: eine Methode für die Medizin- und Bioinformatik?
    Fürstberger** A, Platzer** M, Kestler** HA
    BIOspektrum 2018, 24(3), 235–235 ** co-corresponding authors
  • Species comparison of liver proteomes reveals links to naked mole-rat longevity and human aging.
    Heinze* I, Bens* M, Calzia* E, Holtze S, Dakhovnik O, Sahm A, Kirkpatrick JM, Szafranski K, Romanov N, Sama SN, Holzer K, Singer S, Ermolaeva M, Platzer** M, Hildebrandt** T, Ori** A
    BMC Biol 2018, 16(1), 82 * equal contribution, ** co-senior authors
  • 3D Network exploration and visualisation for lifespan data.
    Hühne* R, Kessler* V, Fürstberger* A, Kühlwein S, Platzer M, Sühnel J, Lausser L, Kestler HA
    BMC Bioinformatics 2018, 19(1), 390 * equal contribution
  • The Influence of Multi-class Feature Selection on the Prediction of Diagnostic Phenotypes
    Lausser L, Szekely R, Schirra LR, Kestler HA
    Neural Process Lett 2018, 48(2), 863–880
  • Rank-based classifiers for extremely high-dimensional gene expression data
    Lausser* L, Schmid* F, Schirra* LR, Wilhelm AFX, Kestler HA
    ADV DATA ANAL CLASSI 2018, 12(4), 917–936 * equal contribution
  • Quantifying compartment-associated variations of protein abundance in proteomics data.
    Parca L, Beck M, Bork P, Ori A
    Mol Syst Biol 2018, 14(7), e8131
  • RBFOX2 and alternative splicing in B-cell lymphoma.
    Quentmeier H, Pommerenke C, Bernhart SH, Dirks WG, Hauer V, Hoffmann S, Nagel S, Siebert R, Uphoff CC, Zaborski M, Drexler HG, ICGC MMML-Seq Consortium
    Blood Cancer J 2018, 8(8), 77
  • Higher gene expression stability during aging in long-lived giant mole-rats than in short-lived rats.
    Sahm A, Bens M, Henning Y, Vole C, Groth M, Schwab M, Hoffmann S, Platzer* M, Szafranski* K, Dammann* P
    Aging (Albany NY) 2018, 10(12), 3938-56 * equal contribution
  • Long-lived rodents reveal signatures of positive selection in genes associated with lifespan.
    Sahm A, Bens M, Szafranski K, Holtze S, Groth M, Görlach M, Calkhoven C, Müller C, Schwab M, Kraus J, Kestler HA, Cellerino A, Burda H, Hildebrandt T, Dammann P, Platzer M
    PLoS Genet 2018, 14(3), e1007272
  • A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells.
    Siegle* L, Schwab* JD, Kühlwein* SD, Lausser L, Tümpel S, Pfister AS, Kühl** M, Kestler** HA
    PLoS One 2018, 13(3), e0195126 * equal contribution, ** co-senior authors