Rudolph Research Group

Current Projects

The research project "Longevity and Aging-Associated Genes in Adult Stem Cell Aging" (ERC Advanced Grant) determines the influence of longevity and aging-associated genes on stem cell aging by employing reverse genetic screening approaches. In vivo and ex vivo RNAi will identify genes and molecular mechanisms that affect the function of stem cells in aging mice or genetically engineered mouse models of accelerated accumulation of molecular damages and stem cell dysfunction. Analysis of primary human stem cells from young vs. old donors will delineate whether the identified genes and mechanisms are conserved in humans.

Reverse genetic approaches of aging/longevity-associated genes have not been conducted in adult mammalian stem cells. Our group gained significant expertise in analyzing molecular mechanisms of stem cell maintenance and function as well as in conducting RNAi screens in different murine stem cell compartments. Our studies will delineate novel mechanisms of stem cell aging and its implication for defects in organ homeostasis and regeneration during aging.

A second project deals with checkpoints and stem cell function upon telomere dysfunction. This project is part of the Marie Curie Initial Training Network "Chronic DNA damage in Ageing" (CodeAge) of the EU 7th Framework Program. The aim is to identify novel checkpoints that limit maintenance and function of adult stem cells in response to telomere dysfunction. Like this, we gain an understanding of the molecular processes that are affected by these checkpoints and generate a rational basis to select novel targets for compound screens aiming to identify novel compounds for regenerative therapies.

For example, Exo1- and p21-independent checkpoints limit stem cell function, organ maintenance and lifespan of aging telomere dysfunctional mice. We have recently shown that Exo1 or p21 deletion can improve the maintenance and function of adult stem cells in response to telomere dysfunction. However, the exact nature of these checkpoints remains unknown. Understanding Exo1- and p21-independent checkpoints in response to telomere dysfunction is expected to identify targets for future therapies aiming to improve stem cell function and organ maintenance in the context of telomere dysfunction and aging.

In late life, hematopoietic stem cells partly lose their functionality, especially the capability to build immune cells, which is thought to contribute to the development of immune defects and increased risk of infections in the elderly. At the same time, a weakened immune system can accelerate aging, since damaged body cells are no longer detected and eliminated by the immune cells. Hence, old and defect cells can live and proliferate for a longer time, thus leading to organ and tissue dysfunction or an increasing risk to come down with cancer.

Our lab is team member in two cooperative research projects funded by the SAW program of the Leibniz foundation. One project is part of a postdoc network on aging induced impairments in regeneration focusing on “Genes regulating hematopoietic stem cells quiescence and aging”. The other project is part of a collaborative project between different Leibniz Institutes to foster interactions within the Leibniz Research Alliance “Healthy Aging”. The project from our laboratory focuses on the targeting of senescent cells in order to improve organ maintenance.

Contact

Prof. Dr. K. Lenhard Rudolph

K. Lenhard Rudolph
Group Leader
+49 3641 65-6350
lenhard.rudolph@leibniz-fli.de

Miwako Morita
Secretary
+49 3641 65-6816
miwako.morita@leibniz-fli.de


Team

Name Phone Email Position
Karl Lenhard Rudolph +49 3641 656350 lenhard.rudolph@leibniz-fli.de Group Leader
Yohei Morita +49 3641 656828 yohei.morita@leibniz-fli.de Postdoc
Vasily Romanov +49 3641 656328 vasily.romanov@leibniz-fli.de Postdoc
Simon Schwörer +49 3641 656814 simon.schwoerer@leibniz-fli.de Postdoc
Stefan Tümpel +49 3641 656826 stefan.tuempel@leibniz-fli.de Postdoc
Mei-Fang Wu +49 3641 656844 mei-fang.wu@leibniz-fli.de Postdoc
Elias Amro +49 3641 656849 elias.amro@leibniz-fli.de Doctoral Student
Ali Hyder Baig +49 3641 656838 ali.baig@leibniz-fli.de Doctoral Student
Seerat Bajwa +49 3641 656838 seerat.bajwa@leibniz-fli.de Doctoral Student
Friedrich Becker +49 3641 656844 friedrich.becker@leibniz-fli.de Doctoral Student
Phillip Gerald Calmes --- phillip.calmes@leibniz-fli.de Doctoral Student
Zhiyang Chen +49 3641 656844 zhiyang.chen@leibniz-fli.de Doctoral Student
Yulin Chen +49 3641 656844 yulin.chen@leibniz-fli.de Doctoral Student
Sarmistha Deb +49 3641 656842 sarmistha.deb@leibniz-fli.de Doctoral Student
George Garside +49 3641 656842 george.garside@leibniz-fli.de Doctoral Student
Bing Han +49 3641 656838 bing.han@leibniz-fli.de Doctoral Student
Nicolas Huber +49 3641 656844 nicolas.huber@leibniz-fli.de Doctoral Student
Ilwook Kim +49 3641 656842 ilwook.kim@leibniz-fli.de Doctoral Student
Sospeter Ngoci Njeru --- sospeter.njeru@leibniz-fli.de Doctoral Student
Omid Omrani +49 3641 656842 omid.omrani@leibniz-fli.de Doctoral Student
Aruna Shukla --- Doctoral Student
Miaomiao Suo --- miaomiao.suo@leibniz-fli.de Doctoral Student
Jiangnan Yang +49 3641 656816 jiangnan.yang@leibniz-fli.de Doctoral Student
Melanie Kettering +49 3641 656820 melanie.kettering@leibniz-fli.de Research Engineer
Sebastian Benkhoff +49 3641 656844 sebastian.benkhoff@leibniz-fli.de Technical Assistant
Johannes Jungwirth +49 3641 656844 johannes.jungwirth@leibniz-fli.de Technical Assistant
Nadine Pömpner +49 3641 656819 nadine.poempner@leibniz-fli.de Technical Assistant
Lena Gauthier +49 3641 656828 lena.gauthier@leibniz-fli.de Master Student
Henriette Henze --- henriette.henze@leibniz-fli.de Master Student
Chen-Jen Hsu +49 3641 656863 chen-jen.hsu@leibniz-fli.de Master Student
Sachin Sridharan --- sachin.sridharan@leibniz-fli.de Master Student
Daniel Whisenant --- daniel.whisenant@leibniz-fli.de Master Student