His insights into the relationship between metabolism, life expectancy and the reduction in energy production by mitochondria in aging organs laid the foundation for cell-based research on aging.
The Man Behind the Institute’s Name

The Leibniz Institute on Aging’s name commemorates Fritz Lipmann, an outstanding German-American biochemist who contributed substantially to our understanding of the foundations of aging.

The physician and chemist discovered the basic mechanisms of energy production and storage within the mitochondria of human cells. Only in recent years, it was shown that this energy production in cells decreases during aging, leading to an accelerated aging process. Lipmann’s work, which was honored with the Nobel Prize in 1953, thus lays the foundations for modern aging research.

Moreover, his ambitious but modest personality, his innovative spirit and precision are supposed to be guidance and motivation for the researchers at the FLI.

The Energy Supplier of Cells

Since 1927, Fritz Lipmann dealt with the metabolism of energy compounds in cells with a special focus on the role of creatine phosphate.

It was known at this time, that muscle contractions are linked to the production of lactic acid and exothermic energy, which result from the cleavage of creatine phosphate through water. By means of fluorides and iodoacetic acid, Lipmann stopped the decomposition of glucose (glycolysis) in muscle cells. With that he could prove, that creatine phosphates do not stimulate muscle contractions directly, but - as a part of adenosine triphosphate (ATP) - rather work as a central energy storage system by taking up energy and giving it off again through hydrolysis. Lipmann provided evidence that muscle contractions may occur without procuding lactic acid.

Nobel Prize

In 1953, Fritz Lipmann was awarded the Nobel Prize in Physiology or Medicine together with the German biochemist Hans Krebs for his work on energy metabolism and the discovery of coenzyme A.

Acetyl Coenzyme A

With studies on the decomposition of glucose in 1910, researchers began to understand intermediary metabolic processes; but up to then, only little was known about the degradation of acetic acids. Acetic acids are central for the human metabolism: Resulting from the combustion of carbohydrates, fat and proteins, acetic acids are important building blocks for several biomolecules as vitamins, cholesterol and hormones.

Fritz Lipmann provided evidence that in cells, acetic acid - which initially is inert - can be activated as an acetyl coenzyme by a thioester and, as an «activated acetic acid» can be decomposed by the citric acid cycle.

Acetyl coenzyme A is an important node within the carbohydrate metabolism, playing a central role in the whole human metabolism and energy management. The core function of coenzyme A is to transfer acetyl groups and to create bondings to relevant enzymes of the intermediary metabolism.